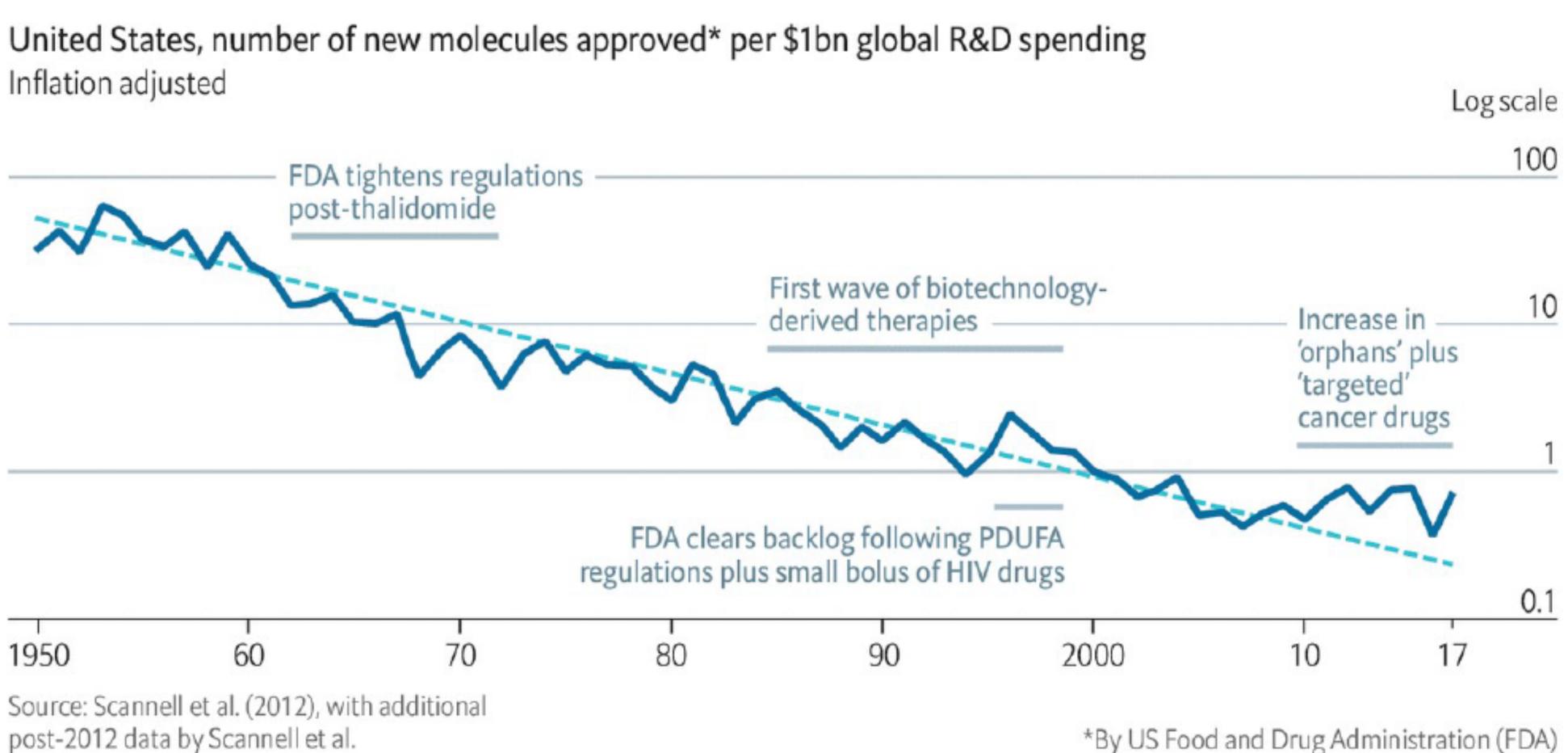
February 10, 2023

Platform Overview for Drug Discovery Workflows Symposium

Current Drug Discovery Trends are Unsustainable

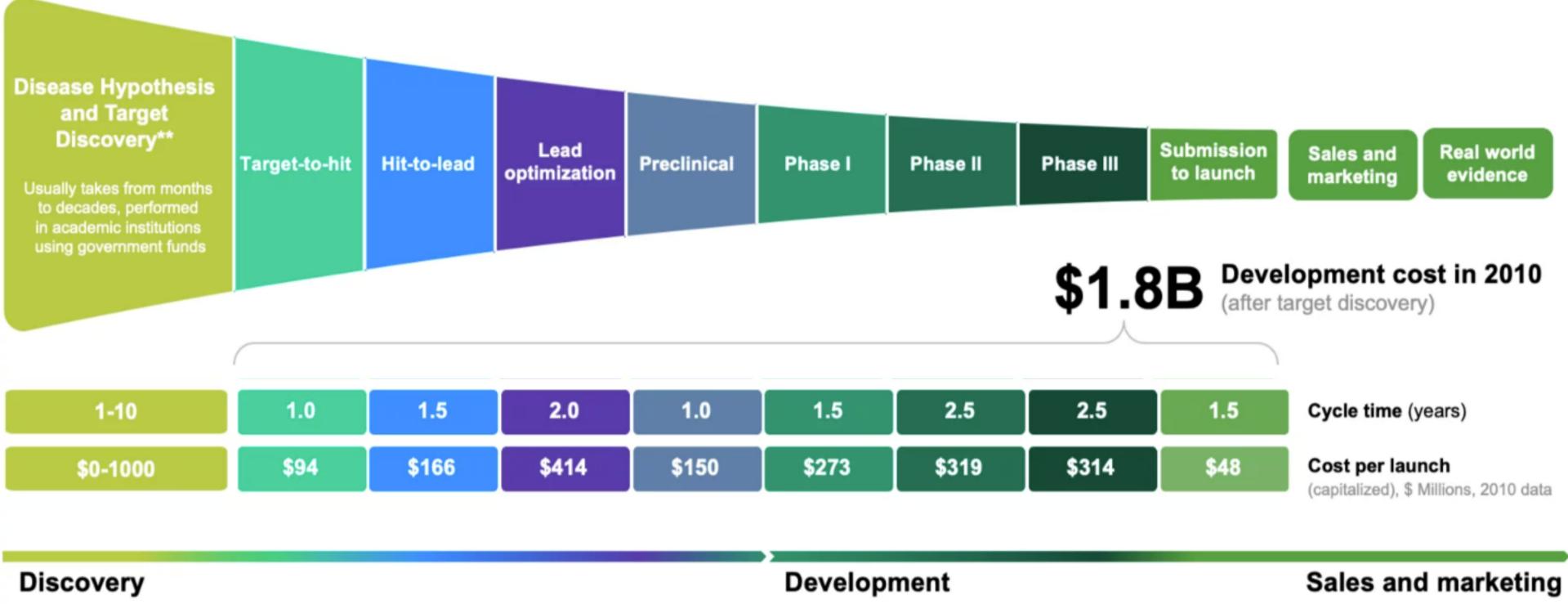


*By US Food and Drug Administration (FDA)

Current Drug Discovery Trends are Unsustainable

Traditional drug R&D takes >10 years and >\$2B*

From the discovery to the launch of a new drug



* Modified from Paul et al, How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Reviews Drug Discovery, 2010

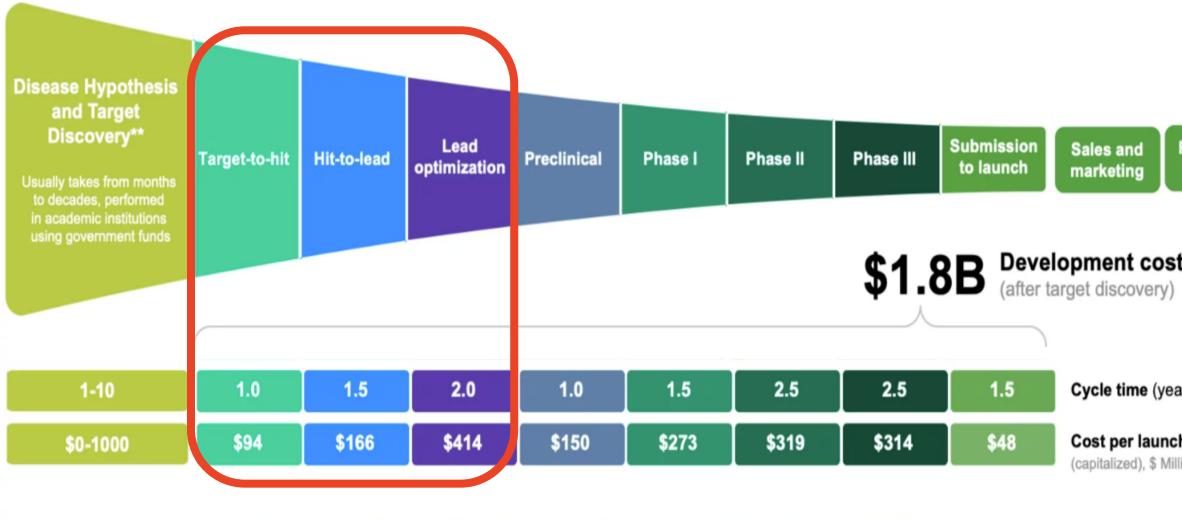
** Based on interviews with the pharmaceutical industry executives

******* From insilico.com

How Can We Improve Efficiency?

Traditional drug R&D takes >10 years and >\$2B*

From the discovery to the launch of a new drug



Discovery

Development

* Modified from Paul et al, How to improve R&D productivity: the pharmaceutical industry's grand challenge

Nature Reviews Drug Discovery, 2010

** Based on interviews with the pharmaceutical industry executives

*** From insilico.com

Sales and marketing	Real world evidence
---------------------	------------------------

Development cost in 2010

Cycle time (years)

Cost per launch (capitalized), \$ Millions, 2010 data

Sales and marketing

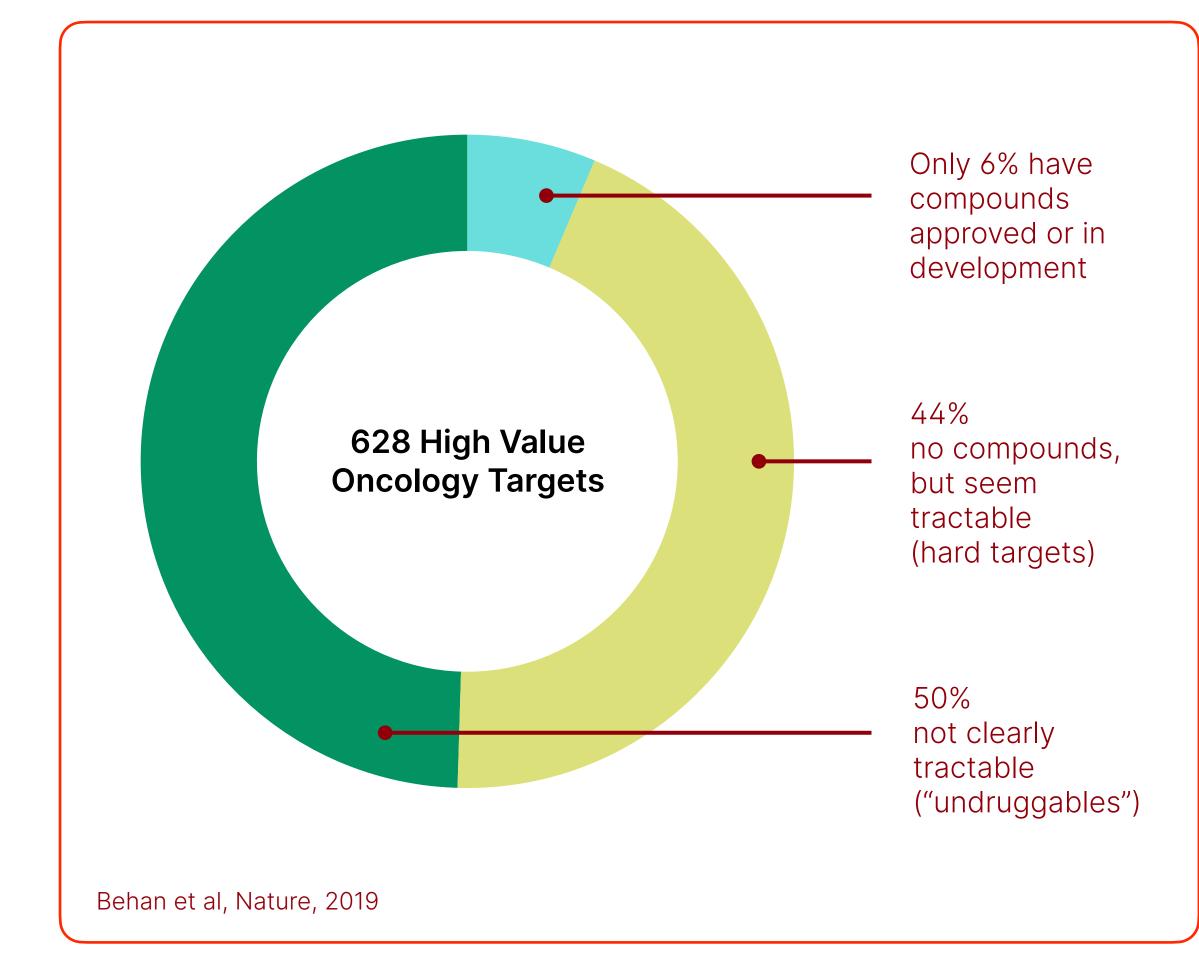
Opportunities for improvement throughout the process:

- Better Target Validation
- Faster Hit Identification
- Drugging "Undruggable" Targets
- Better clinical biomarkers

How can we:

- Identify chemical starting points for difficult targets?
- Speed up the process of Hit ID and Lead Optimization?

Problem: Existing Technologies Miss Valuable Targets



Why can't we drug these high value targets?

1. Novel high value targets need new chemical matter

- Screening collections biased by what used to work
- Pure computational methods biased by static structures and incomplete physical models

Misses:

Cryptic pockets

Protein protein interactions

Nucleic acid binders

2. Hit & lead optimization is slow & low throughput

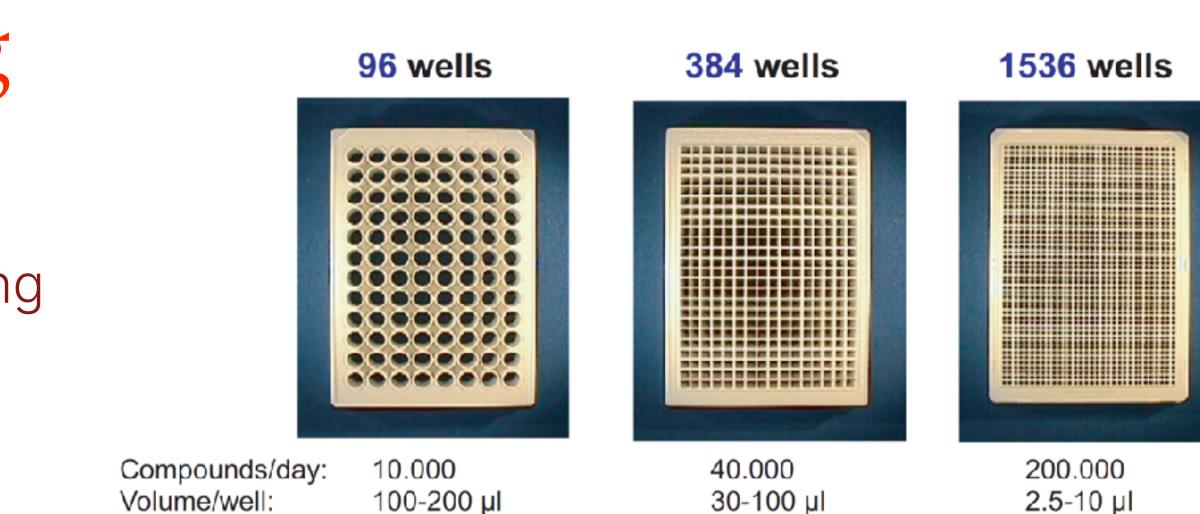
- Synthesizing 10 compounds per chemist per month delays in-vitro and in-vivo compound validation

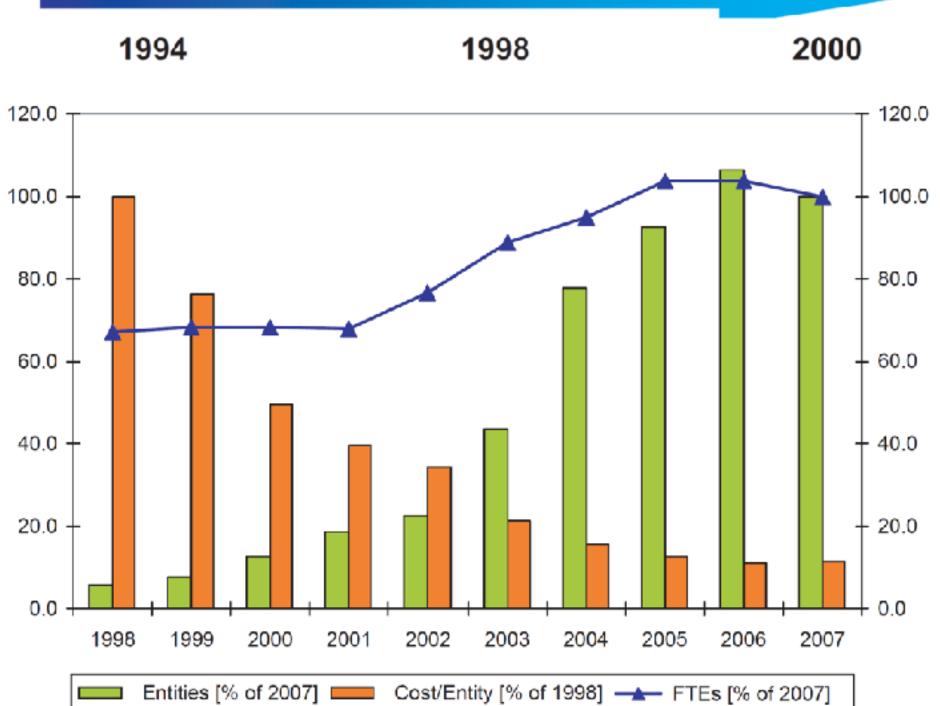
Small Molecule Discovery Tools

High Throughput Screening and DNA Encoded Libraries

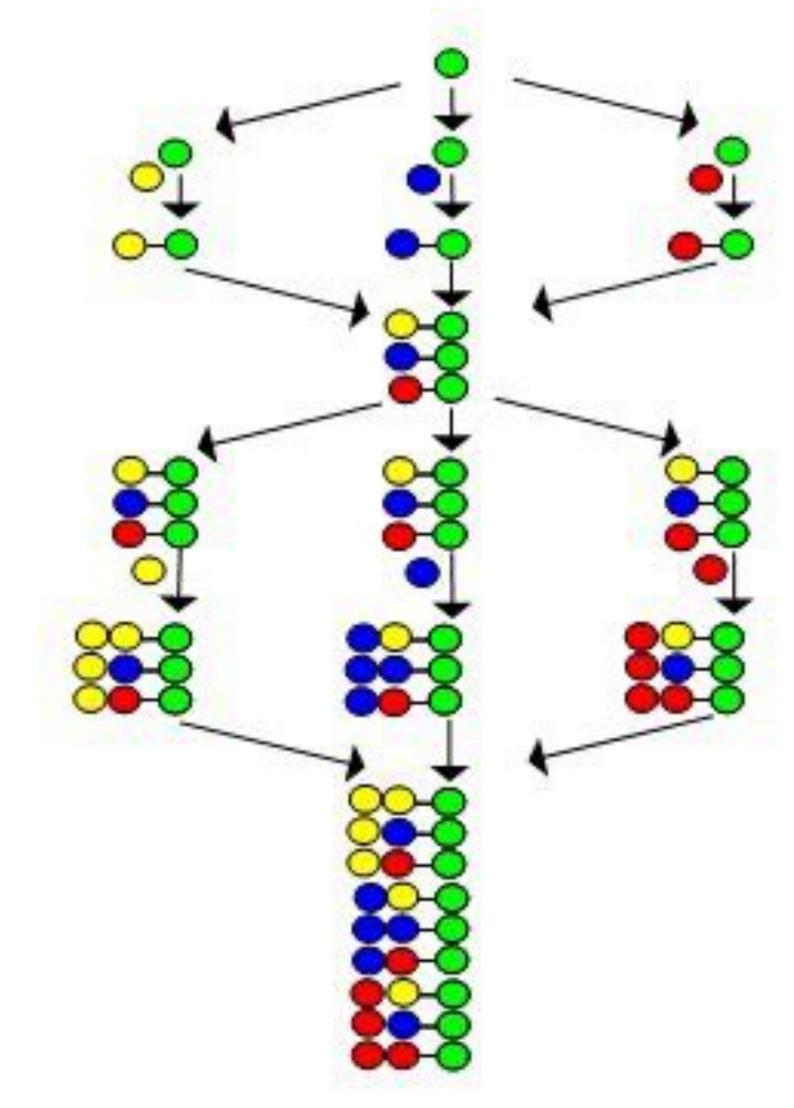
High Throughput Screening

- Hit identification in Big Pharma has been driven through High Throughput Screening over the past several decades
- Increased miniaturization has led to:
 - Screening ~1-2 Million highly purified, discreet compounds
 - 1536 well plates, ~ 1 week to screen
- Screening gains have plateaued:
 - Months to optimize assay conditions
 - ~\$1 Million per screen
 - Compound collections comprised of chemical matter from legacy drug discovery efforts
 - Key limitation: 1 compound per well





How Can We Test More?

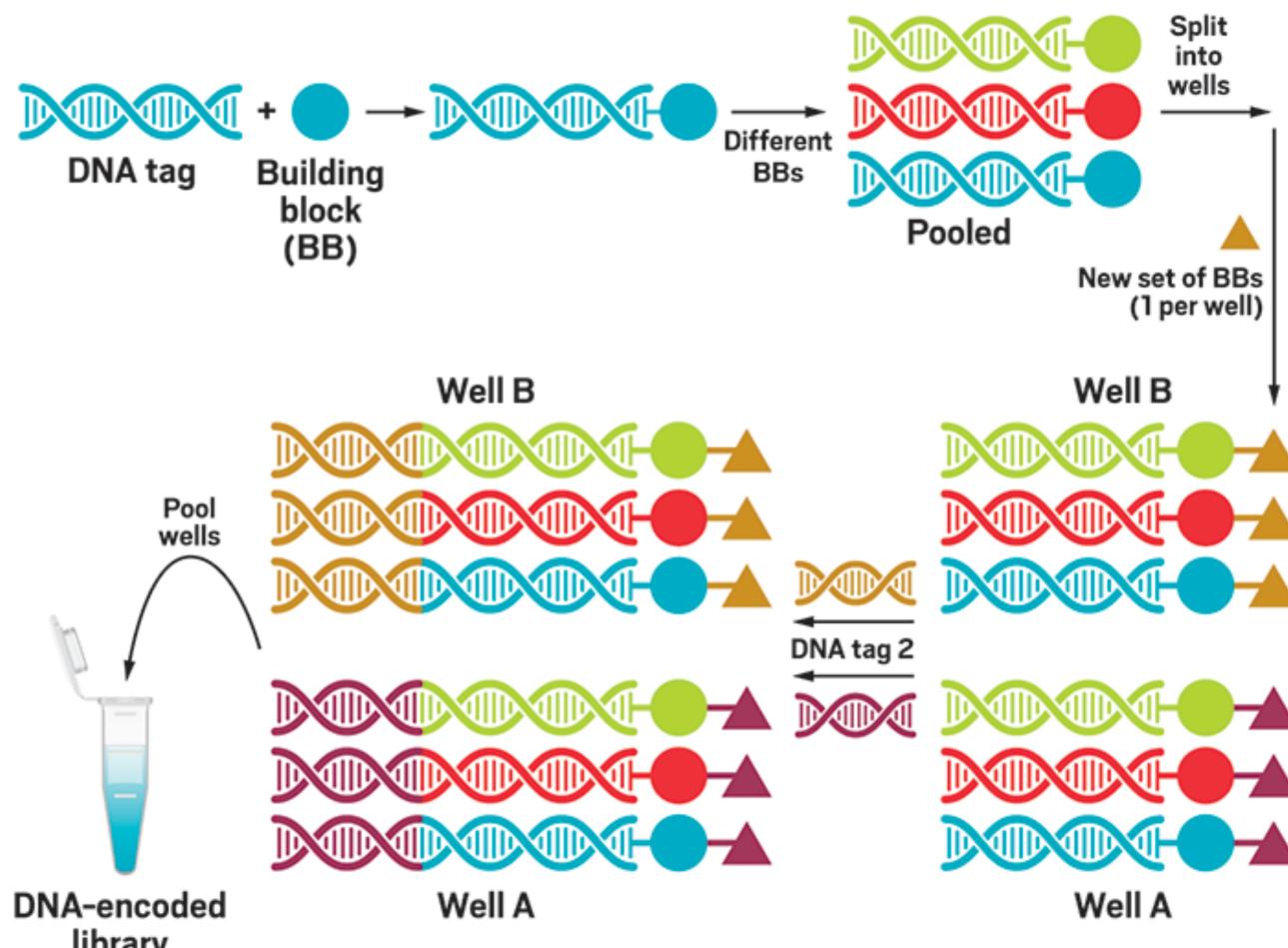


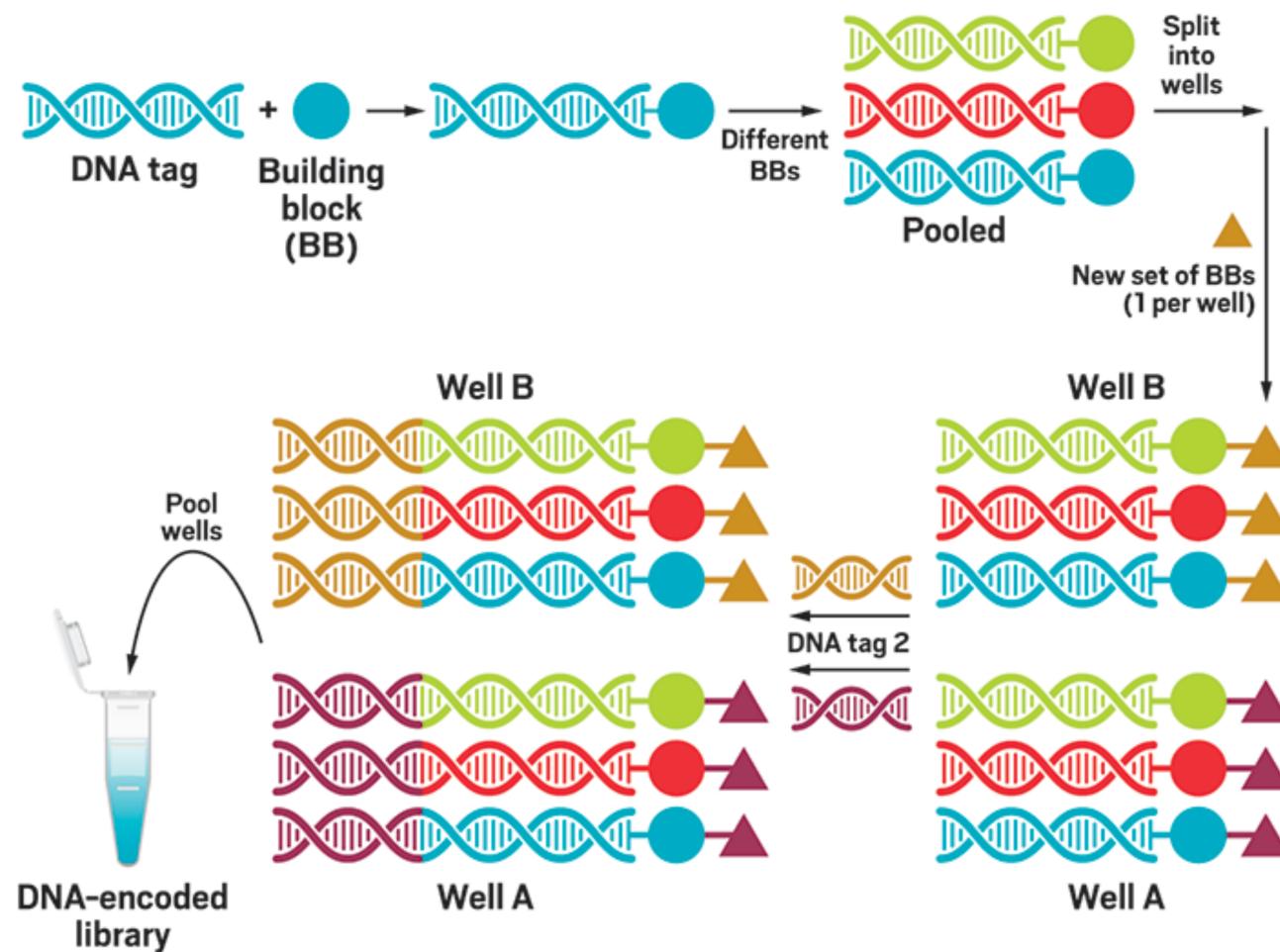
Combinatorial Chemistry

- "Split and Pool" method developed by Bruce Merrifield in the 1960s
- In just a few cycles of chemistry, allows the synthesis of Millions to Billions of compounds
- Molecules exist as a mixture and each molecule represented in tiny quantities
- How to screen a mixture of a Billion compounds and know which one inhibited your target????

Advent of DNA Encoded Libraries (DEL)

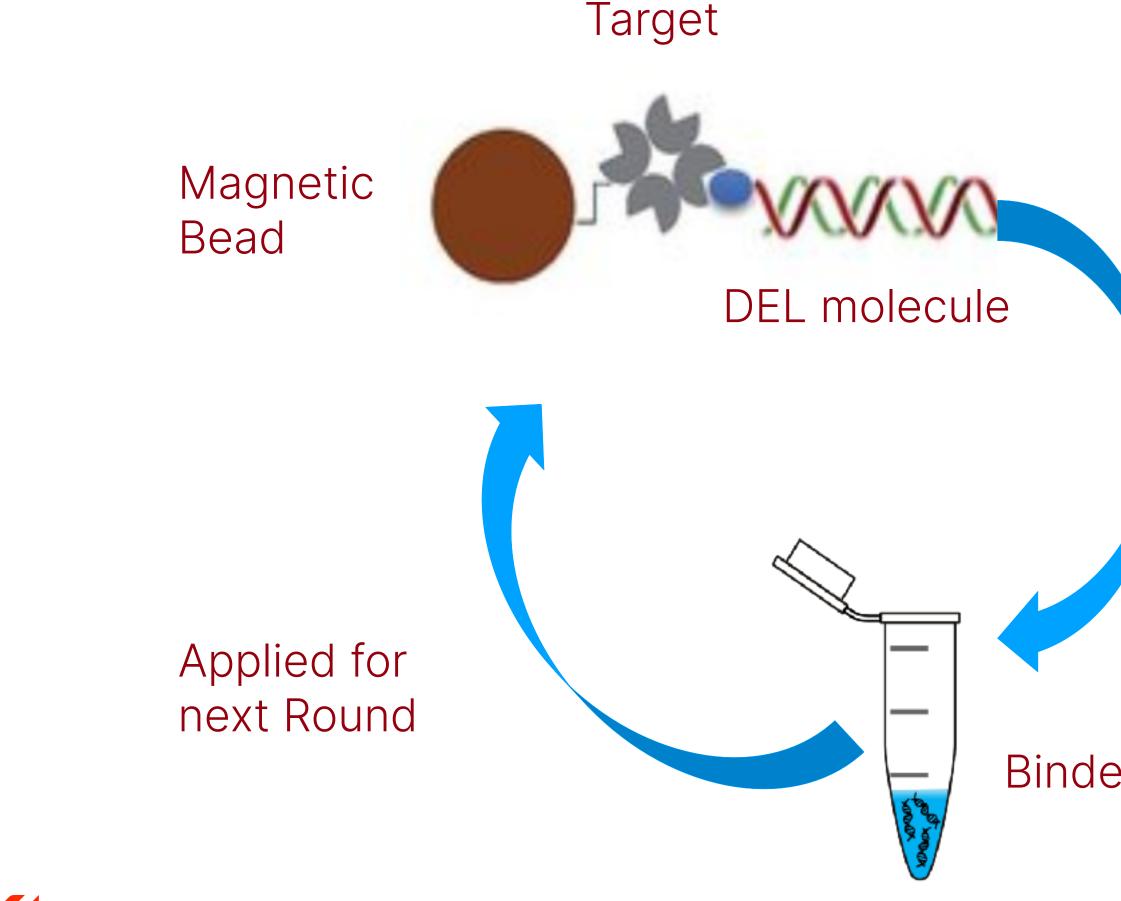
- Combinatorial chemistry in two directions
- DNA tag added at each step that encodes for the building block added
- Through use of PCR and Next gen DNA sequencing, we can now identify each compound from the mixture





Affinity Selection to Identify Binders

ONE ROUND:



anagenex

Typically 2-3 rounds

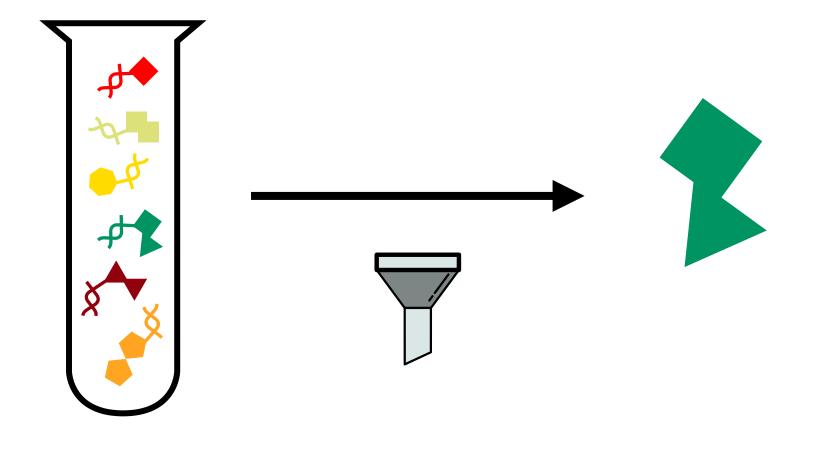
- More rounds = less noise, but also less signal
- Need to calibrate amount of input material to # of rounds
- Read out via PCR then DNA Sequencing

Elution

Binders collected

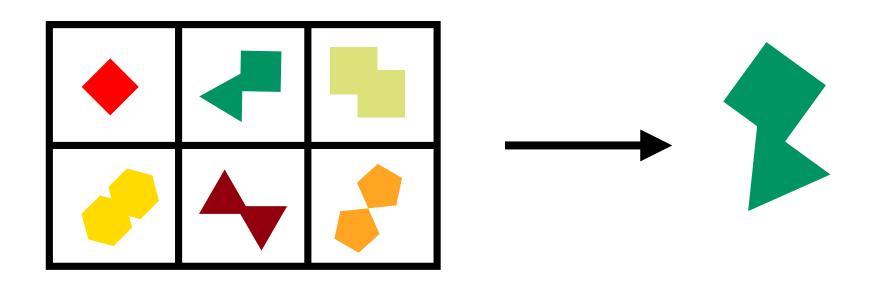
A Better Approach: Parallel Data Generation

DNA ENCODED LIBRARIES: BILLIONS AT A TIME



- Billions of Compounds per tube
- 100s of Parallel Experiments
- Similar to Antibody Development

TRADITIONAL SCREENING: ONE AT A TIME



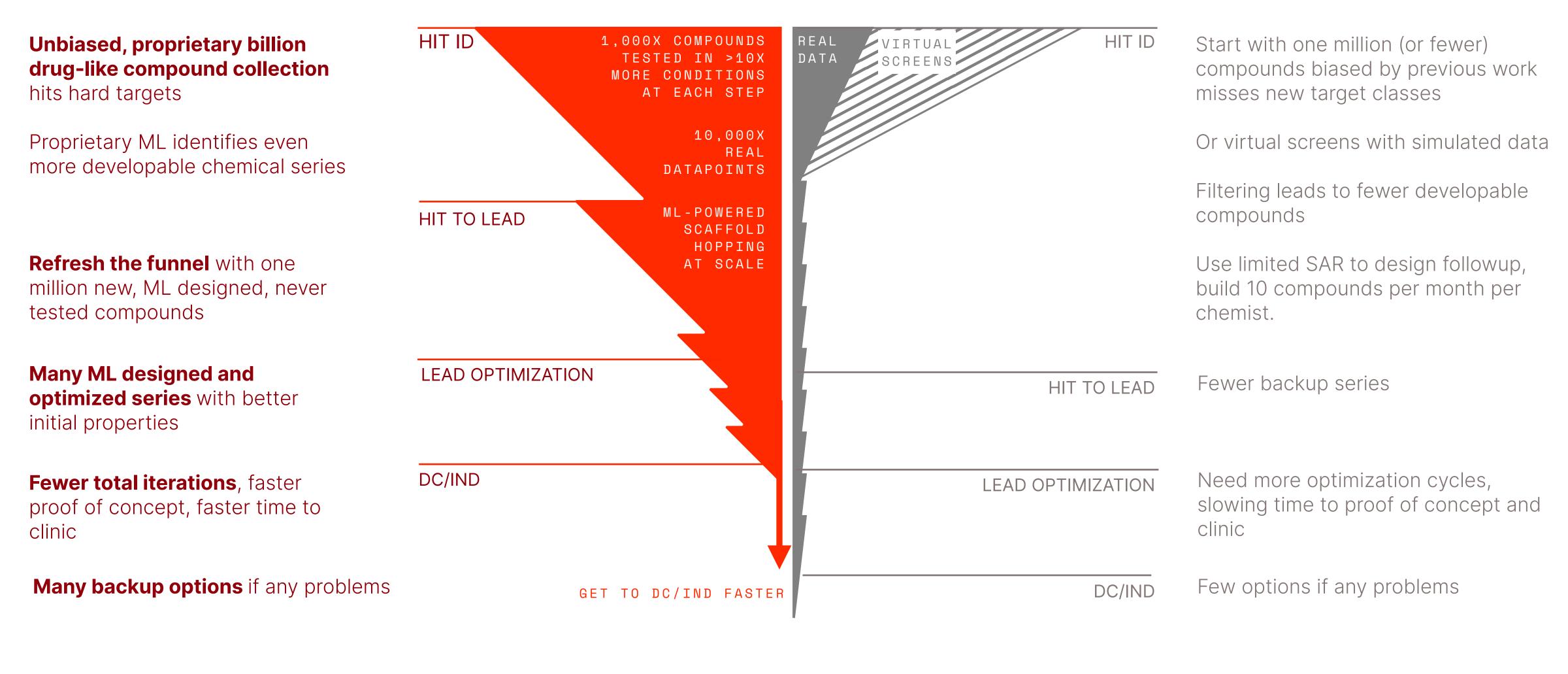
- Single Compound Tested per well
- •One Experiment at a Time
- •1-2M Compound Practical limit

Anagenex Platform

Completely integrated parallel biochemistry platform to generate the best data on the right compounds to enable ML and Iteration

Solution: Iterative Lab + ML Drug Discovery Funnel

Anagenex Platform



NUMBER OF MEASUREMENTS

Traditional Drug Discovery

Our ML-Lab Discovery Platform Delivers:

Rapid ID of drug-like compounds to get to validated chemical matter faster

• Case study 1, 2, 3

- ML and iteration find compounds despite ambiguous, non-selective results from initial screen
- Case study 2

- Get selective compounds early in the process
- Case study 3

Iterative, Parallel Biochemistry Designed by ML Transforms Small Molecule Discovery

Parallel Biochemistry

- ✓ Proven on challenging targets
- ✓ Billions of datapoints per tube
- ✓ REAL not virtual Measurements
- Simple chemistry -
- Too much data for humans to interpret

Hard to iteratively build & test libraries

Big, Iterative Experiments

- ✓ ML-optimized experimental measurements
- ✓ Proprietary high-signal, low noise multibillion point datasets
- ✓ Proprietary algorithms optimized for our lab processes
- ✓ Rapid, complete exploration of chemical space
- ✓ Build+Test 1M new ML-designed compounds in 1.5 months

Best of both, enhanced by large scale iteration

Purpose Built ML

Machine Learning

- Needs real measurements not simulation
- Requires large, quality datasets
- ✓ Extract meaning from massive datasets
- ✓ Extrapolates to new chemical space

Huge benefits from iterative refinement

Experienced Blend of Drug Discovery and Computation

FOUNDER & CEO Nicolas Tilmans

16 yr. ML & DEL. DiCE spinout from PhD | Stanford

SVP EARLY DISCOVERY Joe Franklin

20 yr. Pioneer Parallel Chemistry, 3 INDs | FORMA

VP ML Henri Palacci

11+ yr. ML DE Shaw Research

+16 others from diverse backgrounds form our uniquely talented team.

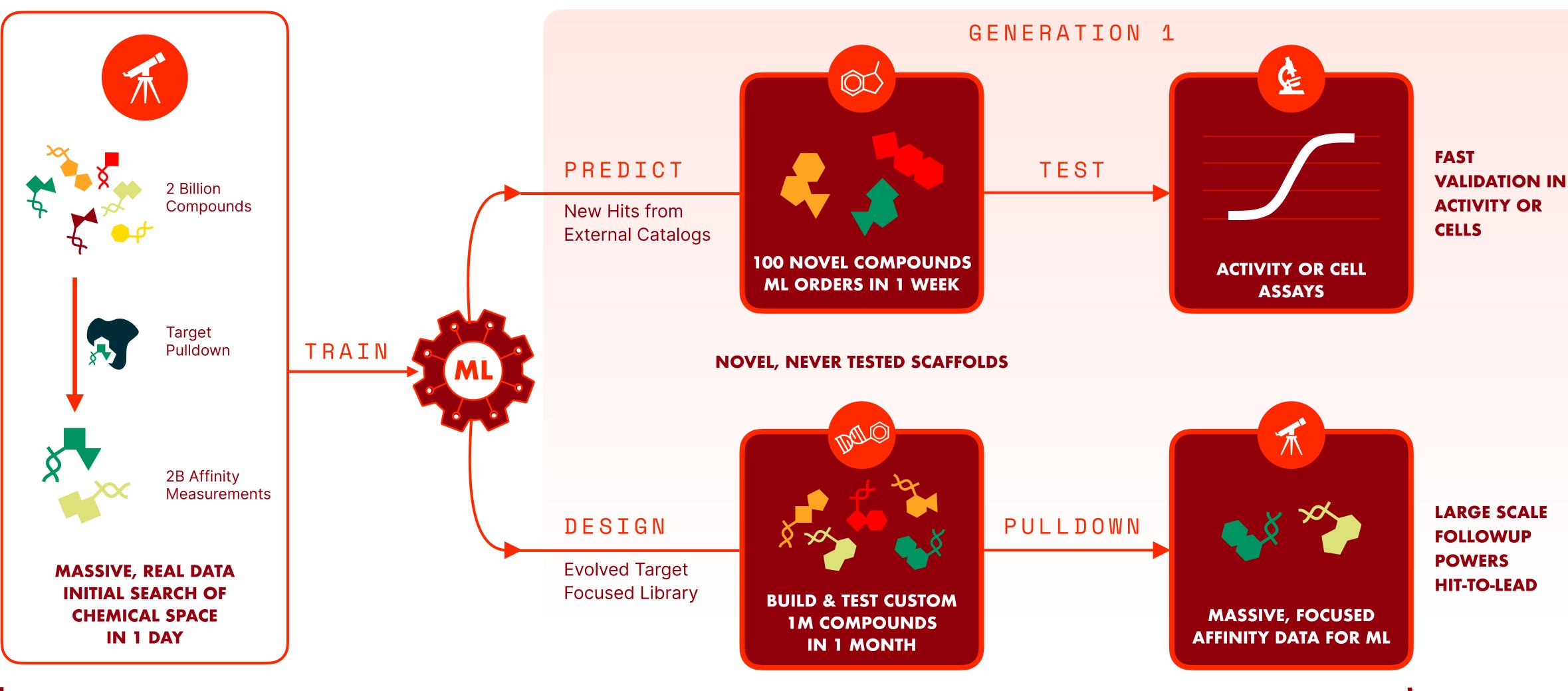
CSO Ryan Kruger

20+ yr. Drug Discovery, 6 INDs Foghorn, GSK

VP BIOLOGY Svetlana Belyanskaya

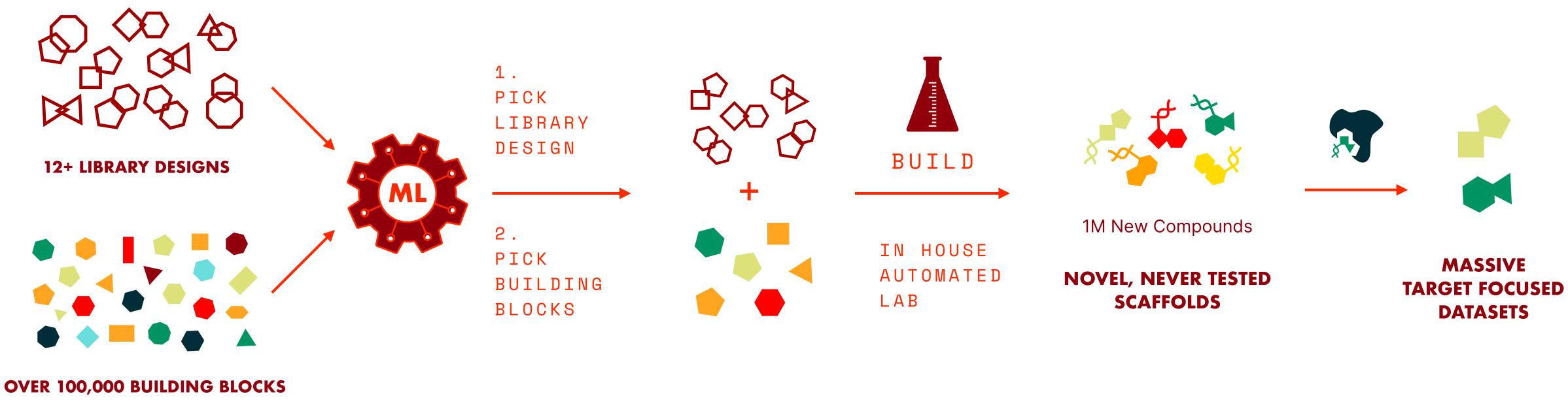
20 yr. Pioneer Parallel Biochemistry GSK

Step 1: Data+ML Powered Rapid and Large-Scale Followup



1.5 MONTHS

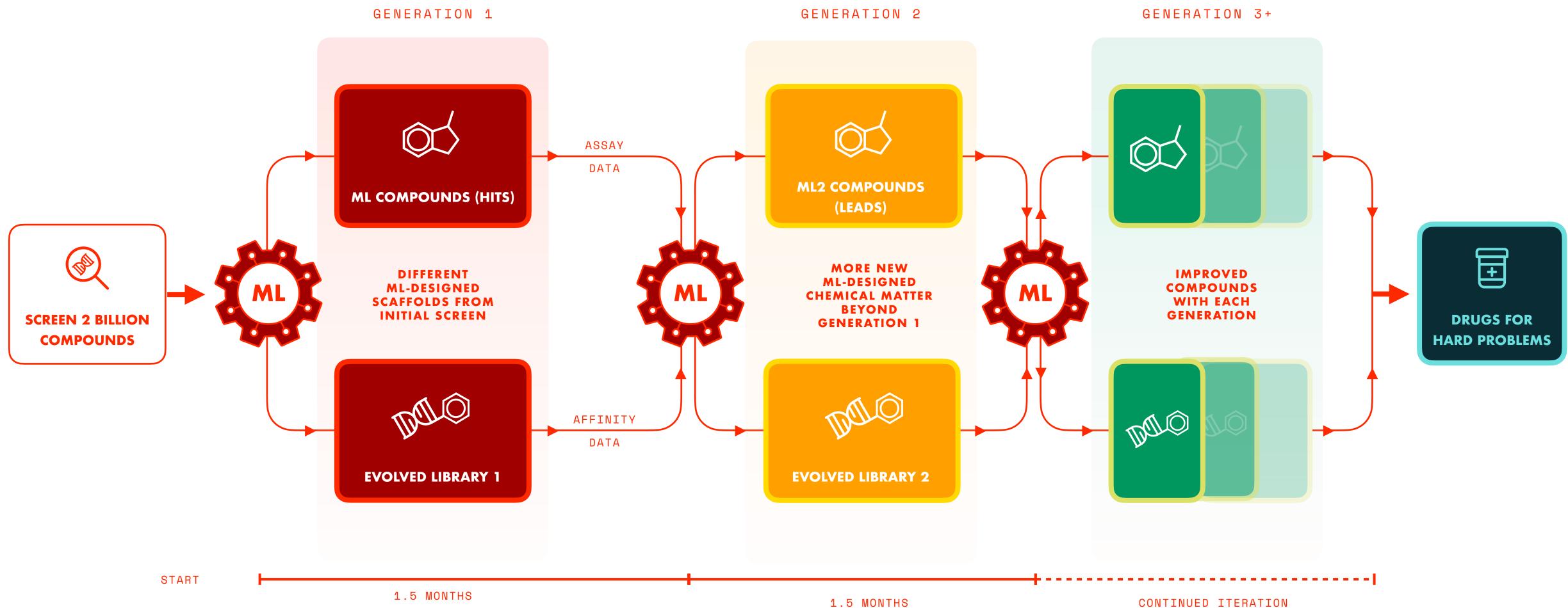
ML-Designed Evolved Libraries: The Anagenex Difference



1.5 MONTHS

ML-Designed, Target Specific "Evolved" libraries Built and Tested in <6 weeks Allows us to explore chemical space 8,000x more efficiently than traditional approaches

Step 2+: ML-Driven Iteration to Find New Scaffolds



Our platform dynamically designs and builds novel previously unseen compounds with better properties at each step These are experimentally tested to drive the next directed evolution loop with massive, real datasets

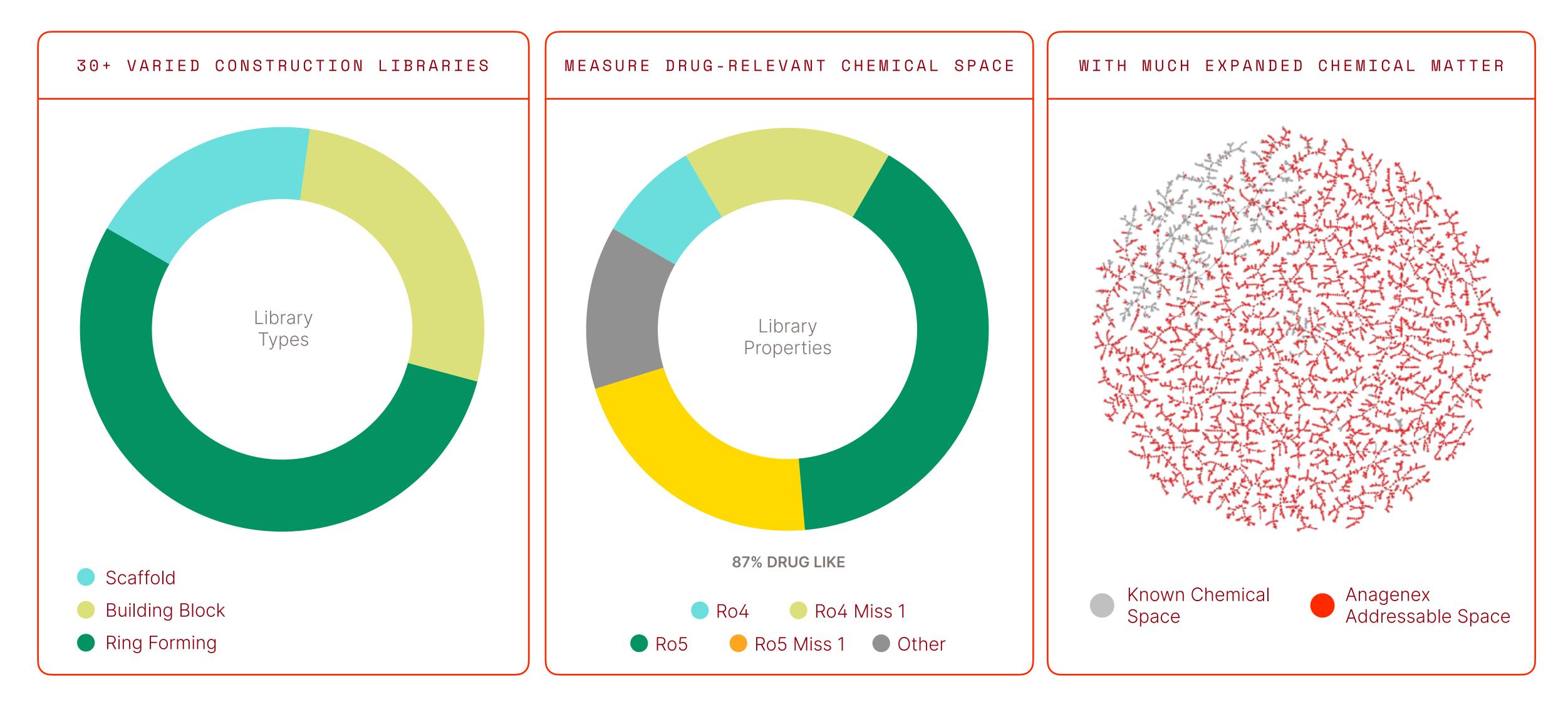
Our Ability to Iterate is Unique and Unlocks New Opportunities

Blurry snapshot, once Finds hits, cannot confidently explore beyond Poor ML performance

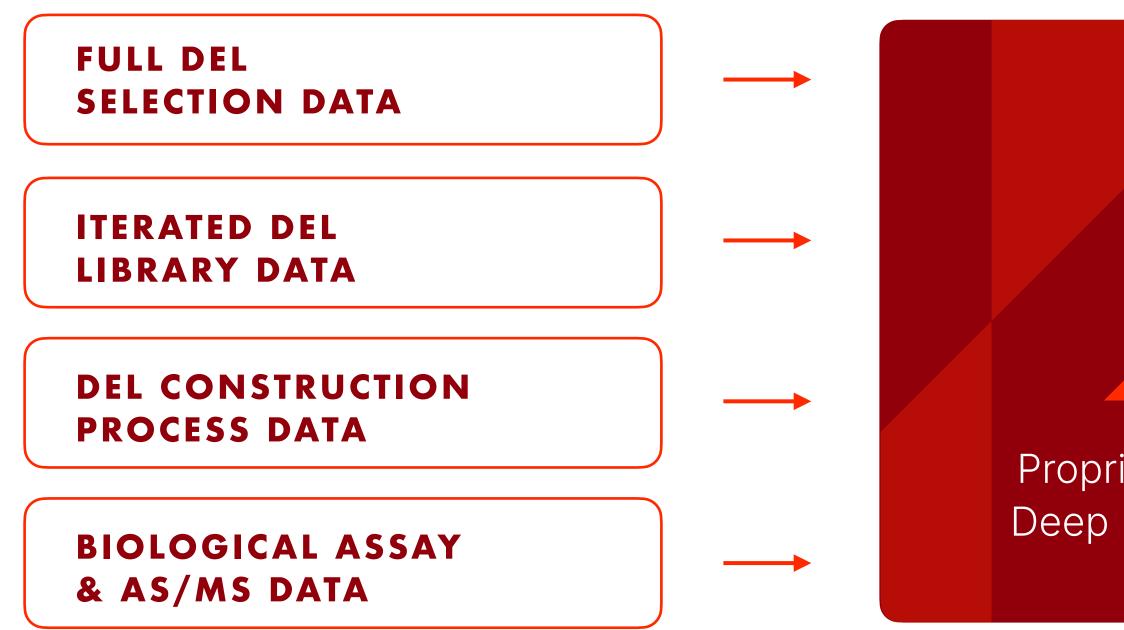
Clear snapshots

Better hits & understanding of SAR to optimize drugs Excellent ML performance

Expanded Chemical Space and Useful ML Predictions



Superior ML by Collecting + Modeling Data Others Don't



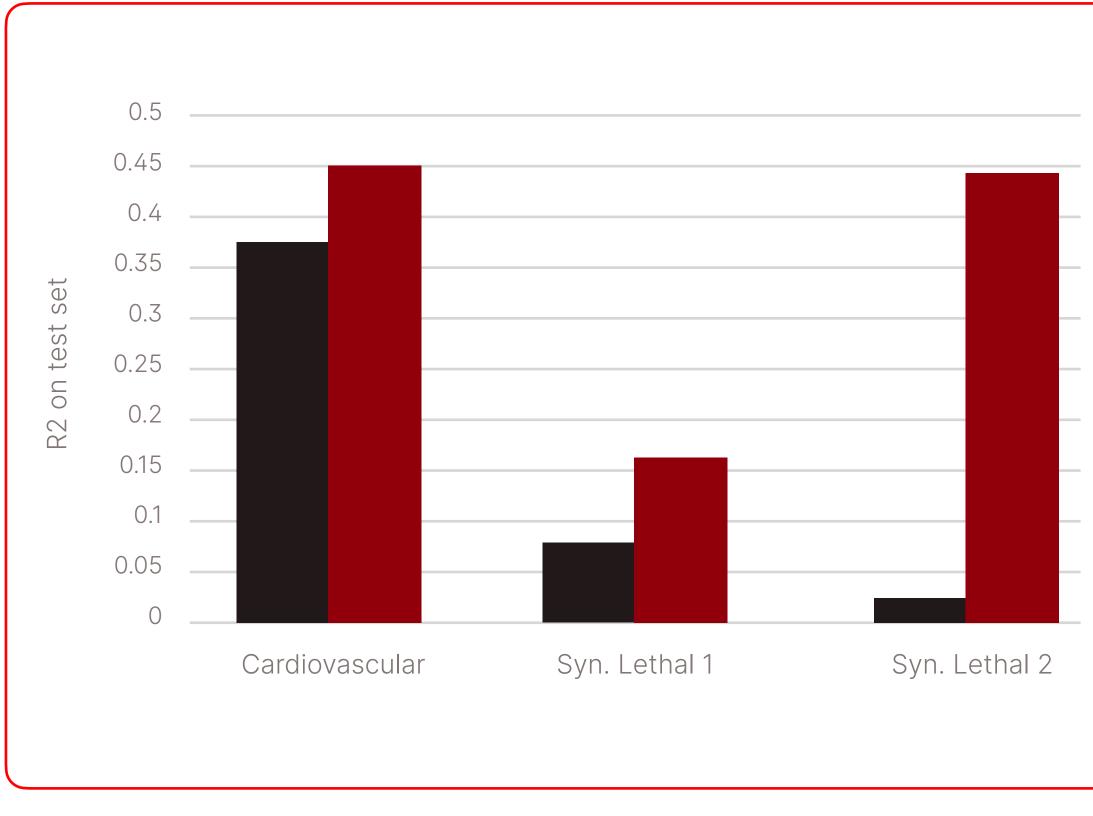
Proprietary Architecture Deep Neural Net Models

HIGHLY ACCURATE PREDICTIONS

ML-DESIGNED ITERATED LIBRARIES

Our DEL Process Enables Better Model Performance

PROPRIETARY LAB PROCESS ENHANCES MODEL PERFORMANCE ON VARIOUS TARGETS



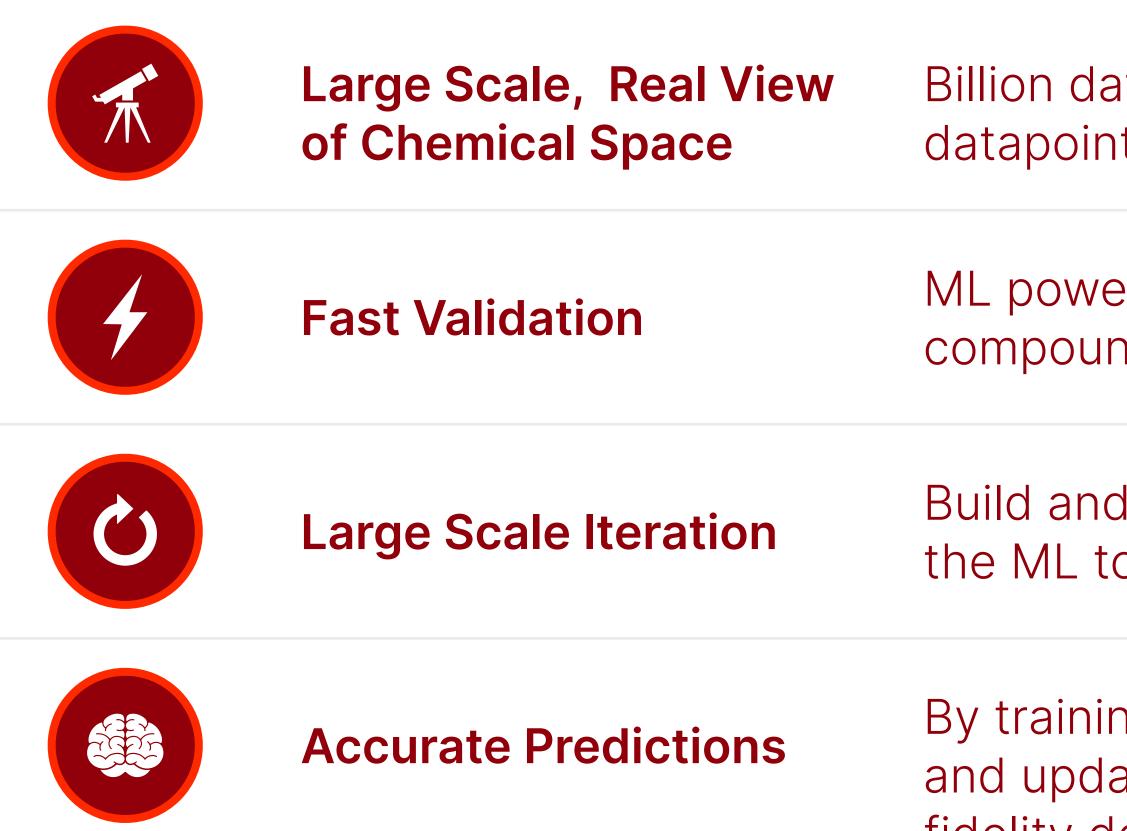
External Library Anagenex

USE ML TO FIND DISTINCT HIT FAMILIES

											- 1.0	
ML_moi1	1	0.13	0.081	0.097	0.16	0.19	0.092	0.18	0.13	0.16		
ML_mol2	0.13	1	0.12	0.11	0.12	0.086	0.076	0.11	0.13	0.1		
ML_mol3	0.081	0.12	1	0.15	0.087	0.072	0.063	0.11	0.12	0.12	- 0.8	
ML_mol4	0.097	0.11	0.15	1	0.062	0.14	0.094	0.11	0.11	0.12		
ML_mol5	0.16	0.12	0.087	0.062	1	0.11	0.099	0.14	0.18	0.16	- 0.6	
ML_mol6	0.19	0.086	0.072	0.14	0.11	1	0.098	0.14	0.15	0.21		
ML_mol7	0.092	0.076	0.063	0.094	0.099	0.098	1	0.078	0.15	0.12	-0.4	
ML_mol8	0.18	0.11	0.11	0.11	0.14	0.14	0.078	1	0.17	0.1		
ML_mol9	0.13	0.13	0.12	0.11	0.18	0.15	0.15	0.17	1	0.18	- 0.2	
ML_mol10	0.16	0.1	0.12	0.12	0.16	0.21	0.12	0.1	0.18	1		
	ML_mol1	ML_mol2	ML_mol3	ML_mol4	ML_mol5	ML_mol6	ML_mol7	ML_mol8	ML_mol9	ML_moi10		

ML finds Novel, Chemically Distinct Compounds (0.2 Tanimoto Similarity to original data)

Differentiated To Identify New Chemical Matter



Validated to find lead compounds not hits or tools to hard, even "undruggable" target classes

Billion datapoint lab experiments on top of a 100+ billion datapoint database enables success on challenging targets

ML powered predictions and fast iterative refinement identifies compounds ready for cells and beyond in six months

Build and test up to one million compounds in six weeks, allowing the ML to check its work, learn faster and solve harder targets

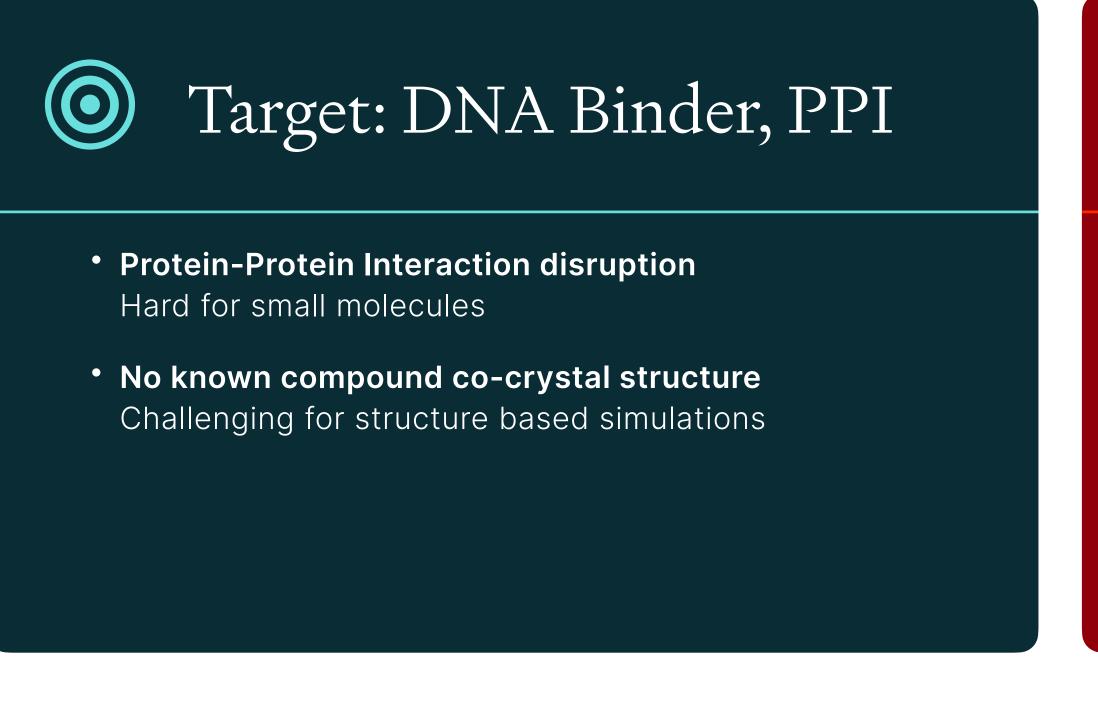
By training our ML on real measurements rather than simulations, and updating them with fresh data, our models power high fidelity decision making

ying

So... Does it Deliver?

Three test cases on challenging targets to prove Parallel Biochemistry + ML can solve more than just easy problems

Case Study 1: ML-Lab Iteration Improves Quality



Results: Lead Series in Nine Months

- Out of 20M purchasable compounds our ML model picked 135 to test
- 21% confirmed as specific target binders (at least 10x better than HTS or virtual screening)
- Synthesized & Tested 300k ML designed compounds to update ML model
- Second generation predictions have more, higher quality compounds
- Beat nM tool compound, all lead-like properties

Hit = experimentally confirmed binding of an ML predicted compound

Case Study 2: ML-Lab Iteration Unlocks "Undruggables"

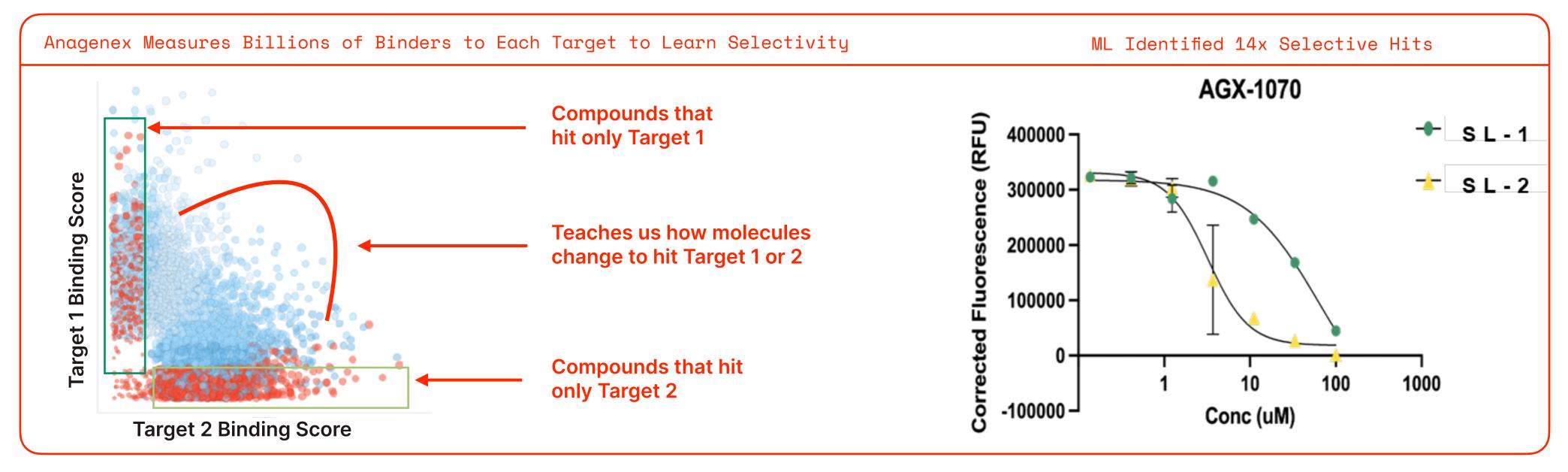
Hit = experimentally confirmed binding of an ML predicted compound

Results: Iteration Finds a Way

- Generation 1 ML model predictions: 2 weak chemotypes from ML1 1% hit rate
- Generation 2 ML model predictions: >50 chemotypes from Evolved ML2 16% hit rate
- Best series <1uM in AS/MS dose response

Our iterative process found a novel cryptic pocket with several promising series in months

Case Study 3: Clinically Valuable Synthetic Lethal Oncology



Generation 2 iteration to identify improved compounds in progress

- Anagenex ML identified promising compounds with initial selectivity

A Proven Iterative ML-Lab Platform for Important Targets

2B Diverse Compounds Tested in 1 day

25 Targets Processed, over 100 **Billion Experimentally Measured Datapoints Collected**

Identified Hits With an Iterative ML-Driven Design Loop

10 Targets with ML Identified Hits Including Known Challenging Target Classes



3 Active Programs

87% drug-like, selected for diversity and historical success

Proprietary multiplexed selection process reduces noise & increases signal

Custom model learns better from rich internal datasets, improves >2x using a single ML-lab iteration

By training our ML on real measurements rather than simulations, our models power high fidelity decision making

Mix across synthetic lethal oncology and cardiovascular

Our Pipeline: Focus on Synthetic Lethal Oncology

TARGET/AREA

Chromatin Remodeling 1

SYN. LET. ONCOLOGY

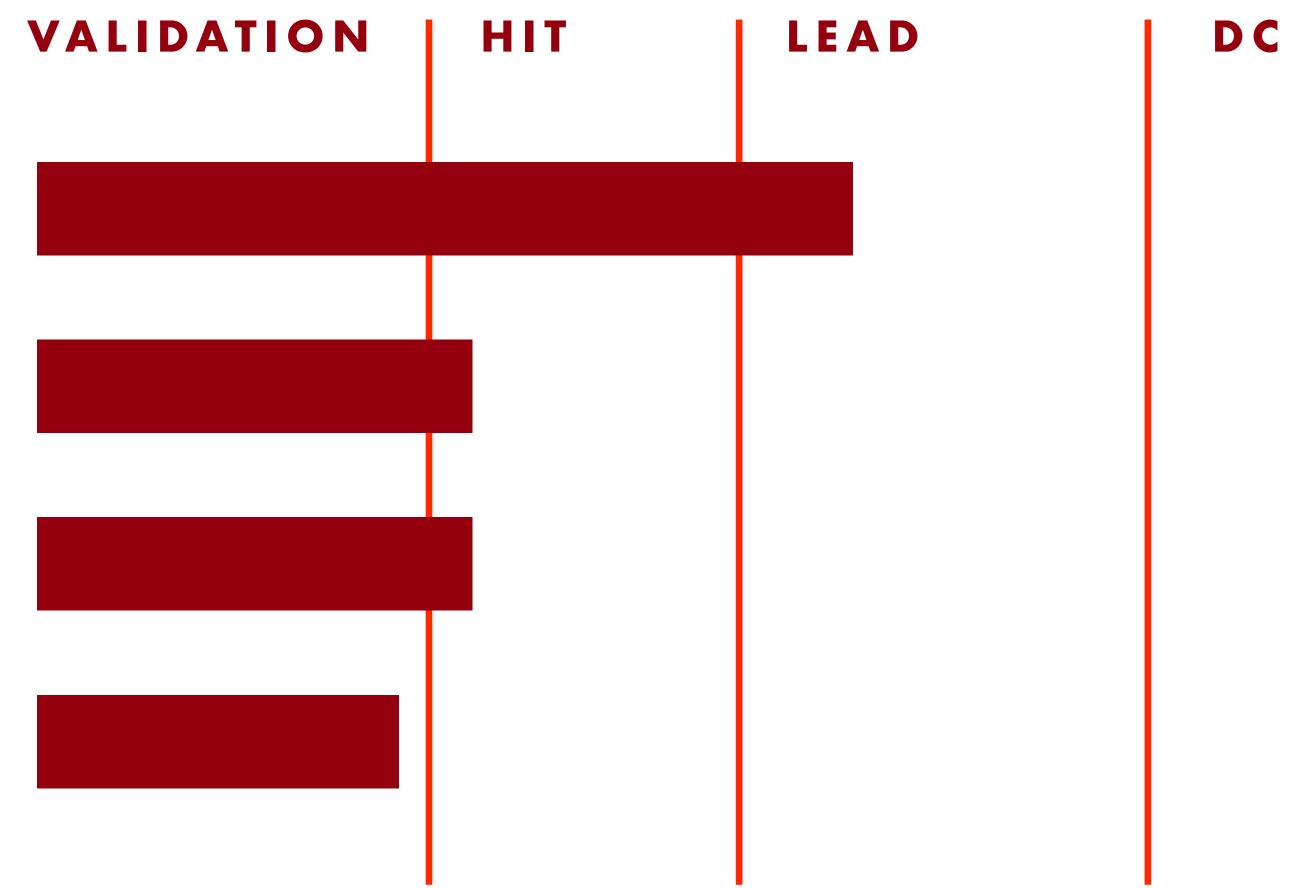
Chromatin Remodeling 2

SYN. LET. ONCOLOGY

Enzyme ONCOLOGY

Secreted Signaling

INFLAMATION



Thank you!

