

Next Generation Quantum Mechanics for Drug Discovery

David Pearlman

VP Product

QSimulate, Boston, MA

https://qsimulate.com

February 2023

Making quantum mechanics relevant to the mainstream

Cofounder & CEO

Toru Shiozaki Previously a Northwestern Chem Professor developing software Cofounder & CSA

Garnet Chan Bren Professor of Chemistry at Caltech, world leading scientist in quantum 25 People company with branches in Boston, Berkeley, and Ghent (Belgium).

- 20 PhDs in the software and science teams
- Deep computational experience in quantum mechanics
- World renowned scientific advisors

Why we need quantum mechanics for drug discovery

The two most common sources of simulation error:

- 1) Insufficient sampling of configurations
 - a) Broadly addressed by massive increases in compute
- 2) Inaccurate energy function
 - a) Prevents reliable calculations for many important systems

Modern drug discovery is critically dependent on computational chemistry

- <u>Protein structure determination</u> on the modern time-scale would be impossible without methods like MD
- Hit identification is almost always jump-started using virtual screening
- Computational methods, particularly free energy calculations (FEP) are heralded as having helped reduce the time for hit-to-lead by as much as 66%, from 3-5 years to 18 months or shorter

Incredible increases in compute fundamentally changed the game

	Circa 1980 (dawn of modern comp chem)	Circa 2023
Machine	Vax 11/780; 1 core	32+ core 5Ghz+ Linux (local); cloud; GPU
Speed	1 MFLOP	170,000 MFLOP (cpu workstation); up to ~10 ⁹ MFLOPS for supercomputer
Memory	128mb or less	64gb common; up to 2-3tb
Storage	9-track tape (170mb)	Many TB on fast RAID
Price	~\$2M (fully configured, inflation adjusted)	\$2-8k
Possible to make <i>reliable</i> predictions with pharma-relevant turnaround?	No	Yes*

* When the model and <u>force field</u> are suitable

New Generation Quantum Mechanics (QM)

QSimulate has developed a platform making possible:

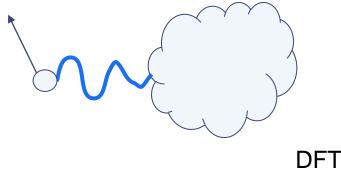
- 1. Unprecedentedly large DFT QM calculations
 - 3000+ atoms, ~1 hour turnaround, ~\$10 on cloud
- 2. Unprecedentedly long QM/MM-based FEP
 - Cloud deployed, fast enough to replace MM



Quantum mechanics summary

Quantum mechanics (QM) is the gold standard

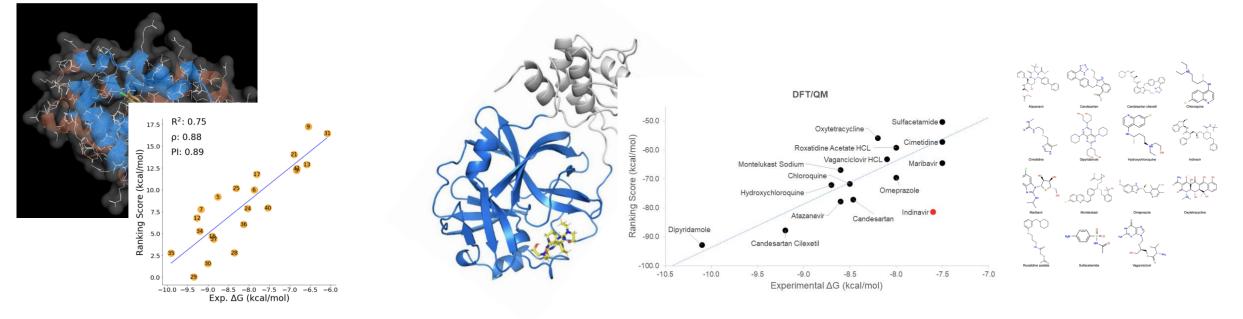
Computational work is based on being able to evaluate energies and forces from atomic structure



- QM is best, but, traditionally, too computationally expensive
- Nearly all simulation work has used MM (Molecular Mechanics)
 - MM: Calculate (E, F) rapidly from analytic function with fitted empirical coefficients
 - MM has gotten better over the decades, but suffers serious deficiencies
- Cost aside, everything that can be done with force fields can be done (better) with quantum mechanics.

Quantum mechanics flavors

- Exact: Impossibly expensive (exponential with number of atoms)
- <u>Hartree-Fock (H-F)</u>: Older style. Becomes prohibitively expensive for larger systems
- <u>Density Functional Theory (DFT)</u>: Determines properties from density. Can be applied to real-world systems. Very good approximation to exact, but still expensive/slow
- <u>Semi-Empirical</u>: Further approximations, but recent versions based on fit to DFT (e.g. GFNn-xTB) still good, very fast, and applicable to larger systems.



First, something else amazing: Ligand/protein scoring using DFT for the full ligand/protein interaction

Direct evaluation of ΔH for ligand binding using DFT

ΔH of binding evaluated by full protein/ligand DFT (revPBE-D3(BJ); def2-SVP)

MCL1 https://arxiv.org/abs/2004.08725

COVID Mpro with diverse set of ligands J. Comput. Aided Mol. Des. 35, 963–971 (2021)

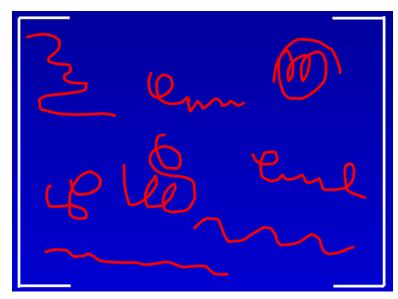
We (re)learned a lesson in a hard way

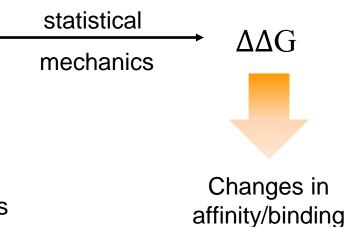
The results were very good-amazingly so-for some systems, but not all

- Very sensitive to the choice of protein models and simulation protocols
- Sometimes, entropy is important

Lesson (re)learned: 'there is no easy way around proper sampling of configurations.'

We decided to pursue QM-based FEP

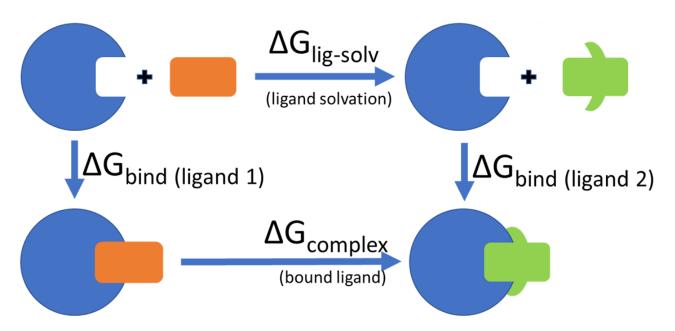

QUantum Enhanced Lead Optimization (QUELO) The first viable QM/MM FEP



Free energy calculations ($\Delta\Delta G$) can direct lead optimization

<u>Question</u>: How does a moderate structural change affect binding?

Method:


Thermodynamic ensembles of conformations

Ensembles generated using long Molecular Dynamics simulations

New Generation QM for Drug Discovery

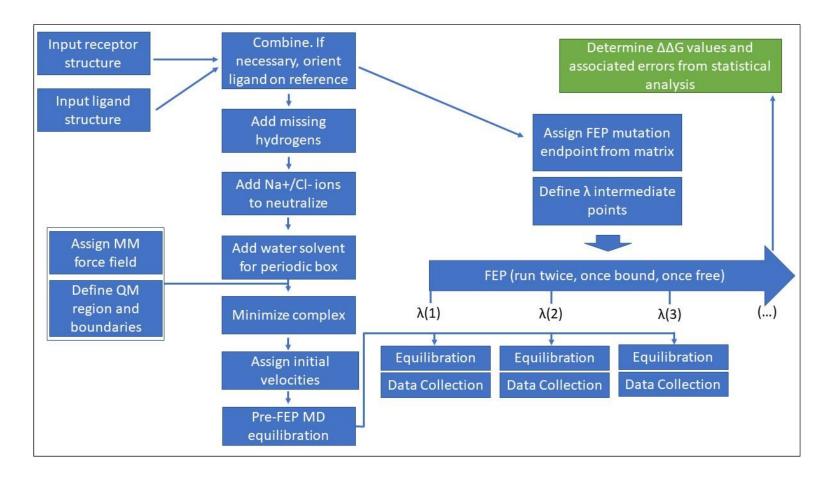
Connecting calculation with experiment: The thermodynamic cycle

$$\Delta\Delta G_{\text{binding}} = (\Delta G_{\text{lig-solv}} - \Delta G_{\text{complex}}) \qquad | \text{ Computed} \\ = (\Delta G_{\text{bind (ligand 1)}} - \Delta G_{\text{bind (ligand 2)}}) | \text{ Experimental}$$

What is QUELO?

Performs FEP ($\Delta\Delta G$) calculations using QM/MM

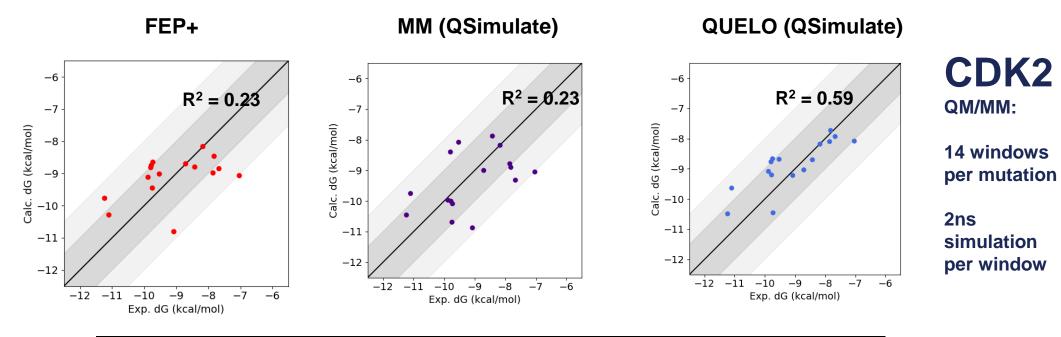
- Same established protocol as MM–no shortcuts!
- Reproduces standard MM FEP when QM region is null
- QM calculated using state-of-the-art semiempirical GFNn-xTB
- MM calculated using Amber FF (ff14SB)



Why QUELO QM/MM-FEP?

If (semi-empirical) QM/MM is a better energy function than MM force fields, which we believe is the case, QM/MM FEP should provide better accuracy for prediction.

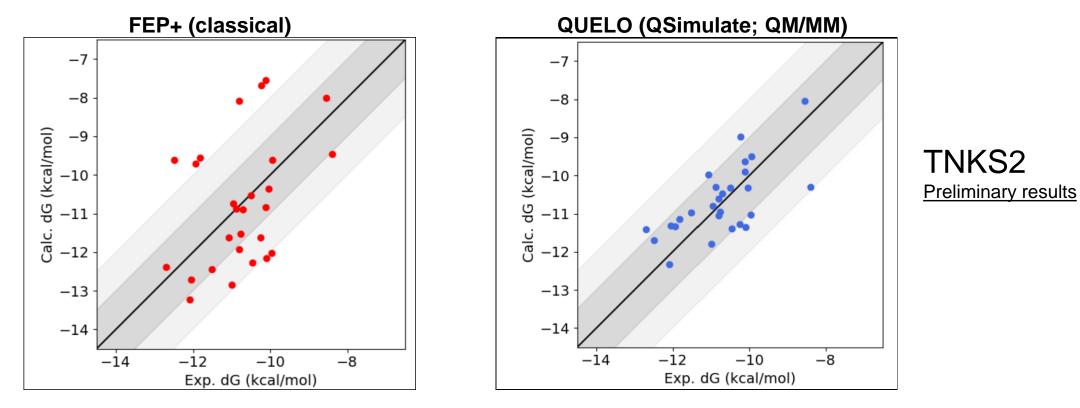
QUELO makes it trivial to run a complex workflow



• Fully automated

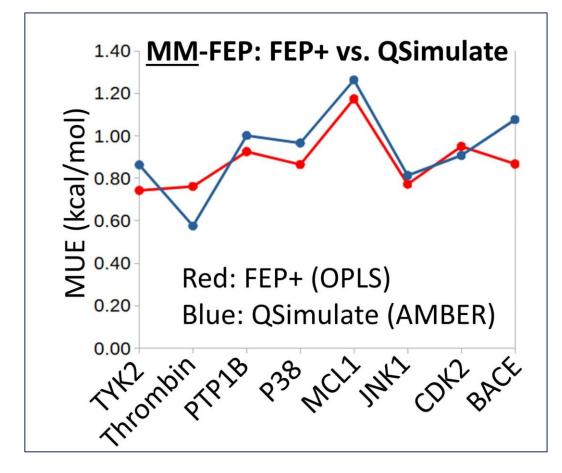
• It as simple to run a quantum FEP simulation as a classical simulation.

QM/MM FEP raises the bar substantially



	Mean Average Error (Kcal/mol)	R ² Linear Regression	T Kandall Rank	ρ Pearson Coeff.
FEP+ classical (OPLS FF)68	0.88	0.23	0.28	0.41
QSimulate classical FEP (Amber)	0.93	0.23	0.20	0.42
QSimulate QM/MM FEP	<mark>0.65</mark>	<mark>0.59</mark>	<mark>0.65</mark>	<mark>0.80</mark>

New Generation QM for Drug Discovery


QUELO QM/MM FEP succeeds where classical FEP+ fails

FEP+ data from J. Chem. Inf. Model. 2020, 60, 11, 5457–5474

QUELO can also perform entirely classical (MM) FEP

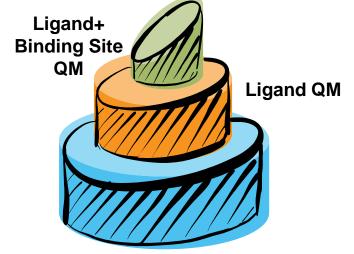
- Providing leading edge performance
- Cloud extensibility
- Attractive cost

Where to Expect Significant Improvements using QUELO?

When ligand can't easily be described by MM e.g., when ligand polarization is important

When there are difficult specific interactions e.g., when there are important halogen bonds, pi-stacking

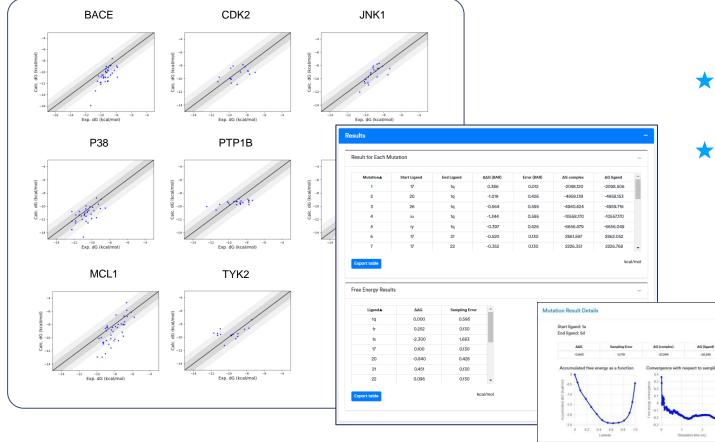
Where formal charge is changing


Metal interactions

New Generation QM for Drug Discovery

QUELO beats the competition on science and cost

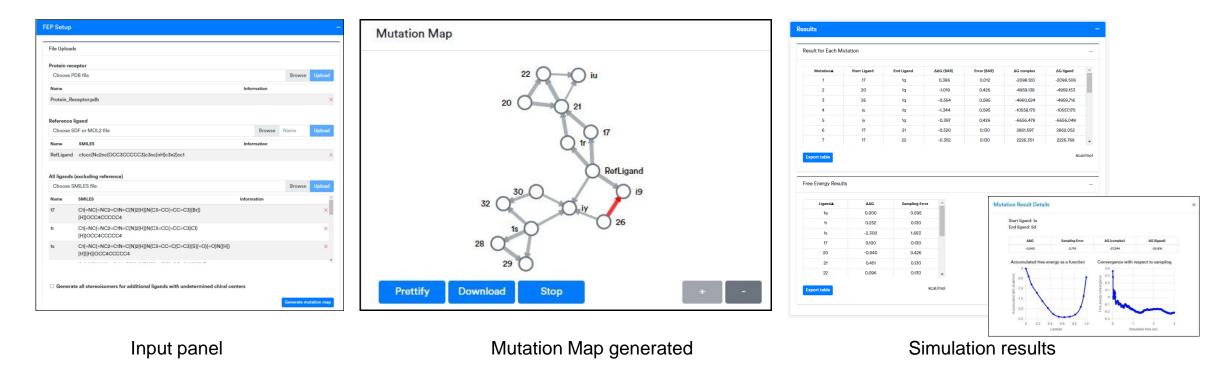
- Ligand+Binding Site QM:
 - Offers accuracy never before possible for many systems
 - Only available through our platform
 - Speed/cost still commensurate with modern pharmaceutical discovery
- Ligand QM:
 - Better than FEP+, at a similar overall cost
 - Only available through our platform
- <u>Classical</u>:
 - A cheaper drop-in replacement of FEP+



Classical

By PresentationGO

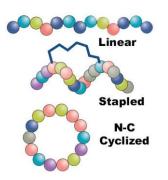
Evaluate dozens of ligands using classical MM FEP in a day



- ★ High throughput using vast cloud computing resources
- No manual labor, no FTE spent on preparation and post processing

It's not just a backend

We automate the FEP workflow on our cloud-based platform (we can probably install this to local environments, but it requires some efforts)


We're working broadly to bring QM to drug discovery

• Automated characterization of <u>covalently bound ligands</u>; warhead tuning

Choose Ric	Browns Uplcast	🔲 Instade all storecisomers	
Total 4 structures:			
No SMILES	Original	Tag	Message
2 G=COHN(=O)+(C000H(2O)C0H(ECC0C000H(0)C0C	H12O(c2vc(N))+3c(+O)c21	C-COntractive(N()v-)c2-O(v)(OB0H(2O)(OBH((O))(OB0H((O))(OBH(2O))(1-O	× c
4 Notcos(5(-O))-O(Nc2nc(O-(jo))N+))-O(O-(jc)-O((n+(2)cc1		Nctoco[5]+O]]+O]Nc2ne[[O-[]o]]N+](+O)[O-]]c(+O)[nH[2]cc1	×
6 C/CINOCNCI-Oletwer/NedisH01-Ct/OI-00N-ICI-00	SC1-0	CONCONC =0]etre[N(n(nH)))=CrC(=0)]N-[C(=0)SC1=0	
7 C/O[NOCNC]+O[ctrec]/(injult[1]+Cfr/O]+O[(N-3O]+O]	\$C1+0	CONCONC -0)ctrs(Nn(nH)0-CtC(+0))N-JC(+0)SC1+0	×
Calculation type			G Advanced
Exploratory (high throughput) Rigorous (low throughput)	shput) Custom (see advanced option		
Conformer Generation	Molecular Mechanics	xTB Optimization	
WASH Developed Bit March 199 March 201		GEN & TR PAND Threaded Co	
Maximum Conference -1	MM Courge Treastanter 15	GERS with Energy Threaded 8	
DFT Optimization	Ground-state Properties	Optical properties	
RACE Treaded St	11 Dipole moreant	10 Transition dipole	
Constructional E	10 Quadrupole moment		
Reference and	II Atomic charges	Optimization Method	
Personal utility .	III Polarizability III Solvation contrav	El Polarizability Use DFT optimization optione El Scholino economia DFT optimization DFT optimization	
Basis Lee .	III Vertical kentration every	Factori office a	
Disservice DISA a	ID Vertical electron affinity	Basic San	
102 Insister a	III HOMO-LUMO energies	Ouperstan 0305.0 2	
	Detinization Method	SCP Basis See dist2-507 #	
	Use DFT optimization option		
	Custorrize DFT options		
	Foresteral address	8	
	Bash Ser darb Darr		
	Department (2010.0		
	CCP Basis Batt doutt-mail		

- High-throughput <u>quantum-fingerprinting</u> of molecules for AI/ML/SAR
 - Automatic 3D structure generation and QM assessment
 - Thousands or millions of molecules on the cloud

• <u>Peptide scoring</u>, including non-canonicals and cyclics

Summary

- 1) Never-before: Full DFT on large ligand/protein system
- 2) Never before: FEP using QM/MM
- 3) Quantum mechanics is now relevant to drug discovery

Without whom... Our development effort depends on many smart people

- Jia Chen
- Alec White
- David Reilley
- Klaas Gunst
- Alexander Doran
- Beatrice van der Goetz
- Fredy Aquino
- Leon Freitag

- Zhenjun Hu
- Dan Moberg
- Justin Provazza
- Sébastien Hoyas
- Sruthi Murlidaran
- Csaba Daday
- Jaden Tayag
- Joachim Vandewalle

Thank you for your interest!

QSimulate 20 Guest St STE 101 Boston, MA 02135

We are a world-class team, deeply passionate about solving world problems through the application of the most innovative quantum technologies. Join our journey!

Contact: info@qsimulate.com